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In this paper we complete the investigations started by K. Hbllig and K. Scherer
"Approximation Theory, III" (E. W. Cheney, Ed.), Academic Press. New York.
1980. We study C. de Boor's conjecture of the L" -boundedness of the L ,projection
P on smooth splines in the special case of a geometric mesh x = Iq"!. A connection
to the interpolation projection is established and the uniform bounded ness of II PI'
with respect to q is proved.

I, INTRODUCTION

For a biinfinite strictly increasing sequence of knots x = lx,.f"EZ we denote
by Nk "., suppNk ", = Ix,.,xPik ], the B-splines of order k which form a
partition of unity on (x /' xu) [51, Sk.x = spanjNk"f is the corresponding
space of splines.

If the matrices

r=O

0< r < 2k

(I)

are invertible on lex' we can define the projections Pk.r: eC'c'f ' X/.) ,

SZk-r,. by the linear systems

(2)

u

Jl~
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Hence Pk,o is the interpolation projection and Pk,k the usual L 2-projection.
Using the well known estimates [51

where C k is a positive constant, we see that [cf. 4)

(4 )

For bounded global mesh ratio, the boundedness of the projections Pk •O

and Pk,k with respect to the L£norm was shown by C. de Boor in 16, 7, cf.
also 12]. He conjectured [3j that for the L 2-projection Pk,k this result
remains valid for an arbitrary sequence of knots and II Pk,k can be
bounded by a constant which only depends on k and not on the mesh. In
general, however, the matrices Ak,r need not to be invertible. In fact, C. A.
Micchelli showed in [16] that for a geometric mesh

0< t < 00, (5 )

there are exactly k - 1 values of q for which interpolation at the knots does
not define a bounded projection on C(x _0':' xcxJ. Therefore a geometric mesh
(5) is a reasonable test for de Boor's conjecture, In this case the: B-spline
basis becomes very simple

and A k ,r is a constant band matrix

r
(Ak,r)"Ii =~ (Nr, Nu r(q" Ii. )),

(6)

(7)

We have set Nr(x) = b(x) and r/(qr - 1) = 1 for r = 0, Moreover the matrix
A k,O is totally positive 18, 15) and therefore, by a standard argument, this is
also true for Ak,r' 0< r < 2k, Hence Ak,r is invertible on /J iff the charac
teristic polynomial

does not vanish for z = -1, In this case we have

(9)

We remark that in the case of equidistant knots the corresponding matrices
A k,r' 0< r < 2k, coincide up to a translation and (2k - I)! Qk.r(L ,) equals
the Euler-Frobenius polynomial as discovered by Schoenberg 1171,
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In 1141 the following relationship between the characteristic polynomials
was shown:

0< r < 2k. (10)

Following a suggestion of Scherer we give a new proof of (10) by
establishing a convolution formula for the 'i-splines corresponding to a
geometric mesh. This extends the classical result in the equidistant case [171

(II)

Our approach via elementary Fourier analysis is completely analogous to the
treatment of the equidistant case and leads to an easy proof of the L J. 

boundedness of Pk •r for r = k - I, k and any q. By computing the limits of
Qk.r(q; -1) for q--+ 00 we prove the uniform boundedness of IIPk.r!1 with
respect to q E (1, 00) in these cases. For r *' k - 1, k, however, there is at
least one value of q for which [IPk.r[!c.e is unbounded. Moreover we extend
our results to L p , 1 (p ( 00. In particular we show that for r *' k the boun
dedness of Pk •r depends on p.

We remark that using our result given in 1141, i.e., Corollary I of this
paper, Theorems 4, 5 have been independently obtained by de Boor and
Micchelli.

2. THE CHARACTERISTIC POLYNOMIALS Qk,'

With a geometric mesh (5) we may associate the Cardinal :J-splines
corresponding to the differential operator [161

Jt(D) = D(D -- t) ... (D - (k - I) t).

The B-spline M k for ~ is given by

( 12)

(13 )

Hence Mk C Ck
- 2 is a piecewise polynomial of degree k - 1 in e lx with

knots at the integers and support [0, k I.
We will need some elementary Fourier analysis [181 and to this end we

recall the definition of Fourier transform and convolution.

(Ff)(y) = I· f(x) e ix
\ dx,

~'"

(f * g)(y) = I fly - x) g(x) dx.
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LEMMA 1. If f ELI has compact support then Ff is an entire function
and we have for a E

(F(eQI))(y) = (Ff)(y - ia).

LEMMA 2. The Fourier transform of Mk is given by

(14)

(15 )

where C1(k, q) = n~=-: (vt/(q" ~ 1)).

Proof Set Fgk = n~:6 (e"teiY
- 1)/(iy + vt)). We first show that gk

coincides with M k up to a constant factor. This follows from the uniqueness
of the B-spline [151 since:

(I) Jtgk=r' (rr' (I-e"tei'))=F-I(~' are i")
1'- 0 .. r 0

k

= ~ a"b(- - V),
1'::::- 0

i.e., gk has the correct smoothness: and

(2) applying Lemma I, we see that

gk = g, * (et'gJ * ... * (et(k-I)'g,),

i.e., supp gk = supp Mk = 10, k I. The constant C 1 can be computed from the
identity

Most of our arguments rely on the following simple observation.

LEMMA 3. For 0 < j < k we have

(16 )

where

C (k .) (k-l) .. · (k-j) (kJ_I) 1'1·-1' qr_l
2 , J, q = t (j _ I)! q , I qk "- 1
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Proof We apply the Fourier transform LO both sides of the Eq. (16) and
obtain, by Lemma 2,

A direct computation shows that C2(k, j) = CI(k)/(C](J) . Ct(k - j)). I

Passing to the limit, q --+ L (16) reduces to the well known convolution
formula for equidistant splines (II).

LEMMA 4. The B~spline M k satisfies the symmetry relation

( 17)

where CJ(k,q)=qk(k 1]/2.

This again follows from (14) and (15) similar to the proofs of the previous
lemmas.

After these preparations we now give an alternative proof of Lemma 4
in [14[.

THEOREM I. For 0 < j < k we have

( 18)

where

, (j~I)! ,'(I '" k' illl q' I I
C4(k.), q) = (k _ I) ... (k ~ j) q' '/~(q '- I) , I 7-:-::]--'

Proof

= t I M,'( v) M ,'( v ~ r) ell dvI . k ~, • •

= tC I I M,'()' - v) M ,'( v - r) eli" drJ , • k, . '

( 19)
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A direct computation shows that

As a consequence of this result we obtain the folJowing relationship
between the characteristic polynomials Qk ,r defined by (8).

COROLLARY 1. The characteristic polynomials Qk.r' a< r < 2k. are
related by

(19)

where

C(kr)- r! rlr+l)/2IrrqU-"-1
j .,q -(2k-I) ... (2k-r)q .=1 q"-I

Proof Applying (18) we obtain by the definition of the polynomials Qk,r

r
Q (q 'z) C4(2k"r,q)z2k-I-r_\'M'k(r-v)qn,z"k.r , = r I ~q -

Remark. Since the zeros of Qk,r(q; .) are distinct, Corollary I can be
viewed as a relation between the zeros A,,(q) of Qk,O(q; .) and A"jq) of
Qk,r(q; ,). viz.,

v = 1,... , 2k - 2 ( 19 ')

which extends the well known equality A"j I) = A,,( I). Our proof was based
on generalizations (15}-( 18) of identities for the equidistant case which we
believe to be of independent interest. As pointed out by de Boor, (19 ') can be
also proved directly and we include the nice argument.

Suppose Ie is a zero of Qk,(J(q; '), i.e., L" A'Nu ,,, is a nulJspline for the
interpolation problem. Taking divided differences. it follows by the Peano
kernel theorem that

I u u • rI \' '''N ( V Dr \' 1 "N ) aq _... ~ q """'- /i. 21<.,1' == i r.u - _ /" 21<..", == .
I' 1'·

Applying successively the formula for differentiating a B-spline expansion



324 K. HOLLIe;

151 and making use of the special structure of a geometric mesh, we end up
with

The constant

• r (2k-j)(I- qJI/),)
F(q;AJ= II 2k J 1

; I q -

does not vanish for the negative zeros A of Qk.O(q; .). Hence we conclude
that A/qr is a zero of Qk.r(q; . ).

The polynomial Qk,O was investigated in [161 in connection with the inter
polation problem for Cardinal ./ -splines. In particular the following formula
for Qk,O was obtained (with different normalization).

THEOREM 2 116, (23) I. For q = e l and r E we have

Qk.O(q; qreiX) = C
1
(2k, q)(qreiX)12k II

2k 1 (I' rite ix _ 1
X\' \'_ e_

,lEt ,:(1 -i(x + 2nj) + (I' - r) I
(20)

We have already specialized the more general result in 1161 for our purposes
and include a short proof for convenience of the reader.

Proof By (14) and (15) the function

H-l ell' rile iy

f(q;y):=C 1(2k,q) II
I' 0 -iy + (v -- r) I

is the Fourier transform of M 2k(- .) qr .. Hence

M 2k(-v)q"=(2n) Ilf(q;y)eiIYdy.

By the Poisson summation formula this implies that the function

\ ' f(q; x + 2nj)
jE ,r

has the same Fourier coefficients as L M 2k(-v) q"e'l'X. Therefore it must
coincide with (qre,x)II-2kl Qk,O(q; qreiX). I

In the next chapter we need some properties of the zeros of the
polynomials Qk,O(q; .).
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THEOREM 3 [161. The polynomial Qu(q; .) has 2k - 2 negative and
simple zeros

(21 )

which are strictly decreasing functions of q mapping (0, (0) onto (-00,0). In
particular we have

(22)

and

(23)

Recently the polynomials Qk,O(q; z) have been investigated by Feng and
Kozak [10] who obtained further nice properties of the zeros A,,(q).

3. BOUNDEDNESS OF THE PROJECTIONS Pk.r

As mentioned already in the Introduction, we have Ii Pull:f ~
1Qk.r(q; -1)1 ~ I. Applying Theorem 2 we obtain

where

2k~ I

Qk.r(q;-I)=Co(k,r,q)(-I) ~ I I
iE,f J' 0 f(n + 2nj) + (r - v) t '

(24)

2k1

Co(k, r, q) = Cj(k, r, q) C j (2k, q) I I (q' r + I)
I' 0

= 2r! (2k - I - r)! 12k
r q' + 1

I II
I'~I q' - I

,k - I

I j
, I

r q' + [
---
q" - I

Since Qk.r has real coefficients this shows that Qk,r(q:-I)=
Qk.2k I r(q; -I) and (9) implies

~ II(A )-1k ,r

THEOREM 4.

= li(A k.2k )
-- 1

1-- r (25)

limQkr(q:-I)=(2jn)2k(-I)k-1 \' (I +2j)-u, (26)
q-d • - - t;i

2k - 1 - 2r
lim Qkr(q;-I)=(-I)' . (27)
q~oo ' 2k - I
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The first part of the Theorem is obvious. To prove the second statement.
we need the following Lemma.

LEMMA 5. Let f be analytic in a neighborhood of the interval! I, 11.
Then the Cauchy principal value 01f(z)/ z can be approximated by Riemann
sums, i.e.,

.1

pLV. I f(z)/z dz
.' I

= ~i~ lL: f(z)/z dz +{ I(z)/z dz (

I n ,I n (' 'V') (' 1') )= lim - ~ - f(-, -f --,' .
n~x, n I' I I' n ,n,

(28)

The proof of the Lemma is a straightforward application of the mean
value theorem and is therefore omitted.

Proof of (27). We first observe that limq ••" t l
. lkCo(k, r, q) = 2r!

(2k - 1- r)!.
Substituting this in (24) yields

lim Qk.r(q;-I)
q-- y.

I \' 2k

ll
' I

= -2r! (2k - I - r)! lim t
I~'x jEl I (J i(rr+2rrj)/t+(r-v)'

By the previous Lemma, the last limit equals

.f 2k I I
(1/2rr) pLV. I II. ' dx .

• - J I' 0 IX + (r - v)

Applying the residue theorem III we obtain

pr.v. r" .,~ 2ni( Res ... + ~ Res···).
. 1m:: ,() :: 0

Since

Res
x iu

l.k- I

II
r-- 0 ix + (r -- v)

2k. 1

=-i II
I' (J

,. I' / U

-,u+r--v

=_i( __ 1)12k I r'/l) Hr-,u)! (2k-I-r>,u)!f I
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we finally end up with

lim Qk,r(q; -1) = 2r! (2k - 1 - r)! (-1),
q -+1:.

x ~ (-1)" {(r-,u)! (2k-I-r+,u)!f 1-1-(--1)'
" I

327

(
2k - I· - 1 ). r ( 2k - 1 )

=2. ) (-I)' '\'(-1)" )1+(-1)',
r ,,-I r -,u . \

Using the recurrence relation

we obtain

= 2 ( 2k ; I ) - 1 (-I r )- (2:_ 1
2

) + (-1 r ( r~ r _2 I ) ( + (-I r

= (-I r 1- 2k2~ 1 + I ( , I

Remark, C. de Boor independently proved (27) starting with the
representation of Qk,U as a divided difference

Qk u(q; z) = I 2k +2[0,,,,, 2k _ 11_,_1_
, q - z

obtained by Micchelli [16, Theorem 2,11, It follows from (19/) that

Evaluating the corresponding divided differences leads, without computing
an infinite series. to the limit as a difference of two factorial terms,

Theorem 4 shows that for a uniform sequence of knots the L f -norm of
(A k,r) -1 grows much more rapidly with the order k than it does for large
values of the local mesh ratio.

THEOREM 5. For r = k - I. k we have

(29)

640'33 (4 4
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and

K. 1I0LLlG

~i~II(Ak) llic~ = (n/2)2k )i~~ (I +2j) 2k(

lim II(A k •r ) III = 2k - L
(f--4 CI

(30)

(31 )

i.e., the LCf)-norms of the projections Pk,k .. ) and Pk,k can be bounded
uniformly with respect to q E (I, 00).

Proof We only have to check the formula for the norm of (A k,k) I. By
(9) and (24) we have

where Yi = n + 2nj and

k 1 I

G;= .I [I yi + (vt)2'

Since

I 2-----+ - --_.
iy;(iYi + kt) -iy;(-iy; + kt) - Y7 + (kt)'

we finally obtain

I

Remark. Recently Feng \11\ has shown that 2k -- I is in fact a lower
bound for the L ·norm of (A k,kr). Therefore one might conjecture that
IQk,k(q; -1)1 ) is a monotone decreasing function of q.

COROLLARY 2. The eigenvalues A, (21) of the interpolation problem, i.e..
the zeros of the polynomials Qk.O(q; '), satisfy

i A,(q)1 < q',

iJe,(q)1 > q',

)'= l,.... k··
. q E (L 00).

)' = k ..... 2k - 2
(32 )

Proof By (22) the inequalities are satisfied for q = L If they were
violated, e.g., for v = k, then there would exist qo E (I, 00) with ;'k(qO) =q~.
But this would imply that Qk.O(qO: -q~) = Qk,k(q: ~-l ) = 0 which is
impossible by Theorem 5 (29).
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The case v= k - I is treated similarly.
For the remaining values of v the inequalities are proved uSing the

interlacing properties of the eigenvalues A,,(q) for fixed q and increasing

order k 112, p. 2231. I

COROLLARY 3. For r of k - 1, k there exists at least one value of

qE (1, (0) such that IIPk.rll". is not bounded.

Proof We may assume r < k - I and have to show that Qk,,{q; -1) ~
Qk.O(q; _qr) vanishes for some qo E (1, (0). For r = k - 2 this follows
because by Theorem 4 Qk,k 2('; -1) changes sign in the interval (1,00), i.e.,
A, (qo) = -q~- 2. By Corollary 2 we have v~ k - 1. Since A,,(q) > Ak ,(q)
there must also exist ql with Ak_l(ql) = _q~-2. But this implies that the
equation Ak_l(q) = _qr has a solution for any r < k - 2, too, which is
equivalent to the existence of a zero of the characteristic polynomial

Qk,r(q;-I). I
We conjecture that there are exactly k - I - r values q" ~Dr which

IIPk,rilx~IIPk,2k-'-r ,O<r<k-I, is not bounded. To this end it
suffices to show that the functions

IA,(q)1/q" " v = 2, ... , k - 1

are strictly increasing for q E (I, (0) (cf. also 112, Theorem 3. 7c I).

4. EXTENSION TO L p

The following result is due to C. de Boor (unpublished manuscript).

THEOREM 6. Let A "I< = (al<_,.) be a totally positive constant band matrix
and denote by

Q(z) = \ ' a,.z"

the characteristic polynomial. Then A is invertible on lp iff Q(-I) of 0.
Moreover we have

(33)

i.e., the norm of the inverse does not depend on p.

Proof The first statement reduces to the case p = 00 since, by a result of
Demko 191, for band matrices invertibility on lp is equivalent to invertibility
on tfJ for any p Ell, 00]. To prove (33) we may assume that Q(-I) of 0,
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i.e., A-I exists. By the assumptions on A we have (A I ),.u = bu , and
sgnb,=±(-l)" 1151. This already implies

!!A I!!I=!IA II:, =!Q(_I)! I

Interpolating between II and !'X we obtain 121

We shall prove equality for p = 2, too. Then the Theorem follows by an
interpolation argument. Suppose. e.g..,IA I II" < !Q( -1)1 I. p < 2. Inter
polating between I" and If leads to the contradiction

To prove that \1 A I!i 2 I =, Q( -1)1 we first observe that the checkerboard
pattern of A I implies

IQ(-I)i = Min Q(e'\)I.
,- X\,"'T

Using the Bessel identity we obtain

=i!F~,ip!;'I" 111~'au rj~ei'l

=,.inf 11('\'le i,U·')(\·a,ei,"')
IJ", I -;; U ,,7" '

inf iQ(ei\)I. I
T[ ~;, x s.,.

For I ( P ( 00, 0 < r < 2k, we define the matrices

where C
7
(k. r. q, p) = (l/(q'- 1))1 /

1 (1/(q2k' - 1))1 I'

corresponding characteristic polynomials
and the

Extending the result in 14, p. 5381 to L". we obtain by (3) and Theorem 6.

!!Pk.r:LfJ-tLfJ!i~!I(Ak~n lil/I=!Qk~~(q;-I)! I (36)
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LEMMA 6. Pk.r' 0 < r < 2k, is bounded with respect to the L,,-norm iff
Qk.O(q; _qr-l/") does not vanish. Moreover, Pk.r is the adjoint c.1' Pk.2k -r'

which implies

(37)

Proof The first part of the Lemma follows directly from Corollary I
and the definition of the polynomial Qkl:;'(q; z). By Lemma 4 we have. for
s E I •

(ll ~- lkJ

Here C is a nonzero constant depending on k, r. p. q.
Hence by the first part of the Lemma the existence of the projection Pk.r:

L" -> L" is equivalent to the existence of the projection PUk I r: Ll' -> L".
It is now easy to check that P: r = Pk . 2k I r' I

THEOREM 7.
bounded with

and

For a geometric mesh (5) the L 2-projection Pk,k: L 2 -> Sk is
respect to every L,,-norm uniformly in p E /1. 00 I and

q Ell. (0). For r *- k. I :( P :( 00

are the only projections which are bounded for every q E (I. (0).

Proof The first part of the Theorem follows from Lemm a 6 and
Theorem 5 by the usual interpolation argument.

We shall show that for r=k- L p< OC! or r<k-I. IIPkJII" is not
bounded for some q E (I. (0). By Lemma 6 it suffices to show that
Qk.O(q: _qS) changes sign on the interval (I, OC!) for s < k ~ l. Arguing as in
the proof of Corollary 3 we may suppose k - 2 < s < k - l. By (20) the sign
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changes of Qk.O(q; _qS), q E (1, 00) correspond to sign changes of the
function

2k I

R(s,t):=t'k-I \' 1 [
jEJ j' 0 i(rr + 2rrj) + (s - 1') t'

Following the proof of Theorem 4 we obtain

lim sgn R(s, t) = (-I )k.
(40

I . 2k. I I
:~~ R(s, t) =: R(s, 00) =~ pLV. \ } t ix + (s _ 1')

With f(x) := n~k_~ll 1/(ix - v) we obtain for s E (k - 2, k . I)

k -. 2

R(s, 00) = i ~ Res f(x -- is)
r- 0 X i(s d

k 2

= i '" Res f(x·- i(k - I)).
" 0 :( i<k t I')

Comparing this with the proof of Theorem 4 we get

i
R(s, 00) = R(k - 1, 00) - - Res f(x - (k - 1))

2 x 0

. I
= \-(2(k - I)! k!) I (_I)k I __~II 2k _. I \

\ i . k . J/
- (2(-1)(-1) ((k-I)! k!) \

=-2
1

((k-I)!k!) \ (__ I)k \_1_ I.
12k - I

This implies that

sgnR(s,oo)=(-I)k 1=-limsgnR(s,t),
1--.0

i.e., Qk.O(q; -q') changes sign on (I, 00) which completes the proof of the
Theorem. I

In particular it follows from Theorem 7 that Pk,k I cannot be defined on
L 2 for some q E (1,00) whereas Pk,k _ I is bounded on L u uniformly in q.
This is quite unexpected from the definition of the projections Pk,r'
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